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Overview: Project Goals

1) to develop a robust and widely applicable lake 
classification system

2) to build a lake assessment toolbox for state 
and national needs

• Lake reference conditions
• Bioassessment indicators
• Biological condition gradients
• Data gaps in sample designs



Project Overview

4. Build a lake assessment toolbox within the 
HGLC framework.

2. Statistically test alternative ‘regionalization 
frames’.

3. Develop & test the HydroGeomorphic Lake 
Classification framework (HGLC).

1. Assemble lake data from six states. 
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Overview: Lake Assessment Toolbox

Human disturbance gradient(s)
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Grouping Lakes:
Statistical Comparison of Regionalizations

e.g., ecoregions or major river catchments
If regionalizations “capture” substantial 
variation among lakes, then they can be a 
useful component of assessment frameworks.

REGIONALIZATION = a classification approach 
that groups together water bodies that lie within 
a similar geographical region (Seelbach et al.
2002)

Regionalization is the first step in developing 
the HGLC classification.



Regionalizations and Hierarchical Linear Models

among region variation v. high low

within region variation v. low high



Regionalizations: Statistical Analysis

Yij 00 0j ij

u rij ~N(0, σ2
0j ~N(0,      )τ 00 )

τ 00% variation among regions = τ + σ2
00

= ɣ + u + r

Best regionalization framework criteria:
1) Largest % variation among regions

2)Smallest AICC (model fit statistic)



Lakes and Regionalizations

2314 lakes from 6 states (IA, WI, MI, OH, NH, ME)
•Lake : > 1 ha surface area and maximum depth > 2 
meters, includes (dammed and undammed) and 
reservoirs 

•Average lake area: 2812 ha (range: 13.3–533,666 ha)
•Average maximum depth: 11.7 m (range: 2–96.3 m)

11 regionalization frameworks (regions, subregions)
• Political boundaries: State, county
•Terrestrially derived ecoregions: EPA regions 
(agglomerated Omernik), Omernik level 3 ecoregions, 
Bailey sections, Major Landscape Resource Areas

•Aquatically derived ecoregions: Freshwater 
Ecoregions, Ecological Drainage Units, Hydrologic 
Landscape Regions, 6 digits hydrologic units, 8 digit 
hydrologic units



8 Water Quality Response Variables 
(n, average, range)

Total nutrients (ug/L):
o TP (2314, 22, 1–920)
o TN (1466, 686, 66–14,661)

Algae: Chlorophyll (2314, 10, 0.02–328 ug/L)

Water clarity: Secchi disk depth (2314, 3.6, 0.2–14.3 m)

Trophic status: PCA factor scores of TP, chl, & Secchi (2316)

Acid buffering capacity:
o Alkalinity (1970, 45, -2–302 mg/L CaCO3) 
o Conductivity (1667, 124, 10–1313 uS/cm)

Water color:
o Water color (1650, 24, 1–193 PtCo)



Results: Regionalization Matters
100 p < 0.001 for all combos of 

regions and response variables
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Results: Which Regionalization Is Best?

Criteria 1)  highest regional % variation 

Omernik Bailey FW State County EPA MLRA EDU HLR HU-6 HU-8L3 Section Ecos
Phosphorus X
Nitrogen X
Chlorophyll X
Secchi X
Trophic 
Status X
Alkalinity X
Conductivity X
Color X

# regions: 6   370     18     4     29      33    8    45  17   57  231

Political Terrestrial Aquatic



Results: Which Regionalization Is Best?

Stat Omernik Bailey FW County EPA MLRA EDU HLR HU-6 HU-8e L3 Section Ecos
Phosphorus X X
Nitrogen X X
Chlorophyll X X
Secchi X X
Trophic 
Status X X
Alkalinity X X
Conductivity X X
Color X X X X

Criteria 2)  Practicality: lowest AICC

# regions: 6   370     18     4     29      33    8    45  17   57  231

Political Terrestrial Aquatic



Regionalizations: Conclusions to Date

Regionalization matters.

% variation among regions ranged 40-70% for 
most response variables.

There is not a single best regionalization for 
all water chemistry measures.

Land use differences may obscure the 
‘natural HGM signature’.



Regionalization to Variance Components

Regionalization plays a role in assessing current 
status, and also in detecting trends over time.

The ability of a monitoring program to detect 
trends over time is influenced by spatial 
variation.

Several other sources of variation also play a 
role.  Hence, it’s important to consider the 
‘components of variance’ when selecting 
response metrics and designing monitoring 
systems.



Components of Variance

Advocated for addressing status and 
trends of ecological data (Urquhart et al. 1998)

– Partition total variance into:
• Site-to-site (spatial) variation
• Coherent temporal variation (i.e., synchrony) –

affects all sites in a similar manner
• Ephemeral temporal variation – independent 

yearly variation at each site (site×year)
• Random slope – each site allowed to have own 

trend
• Residual variation – unexplained error



Components of Variance

Provides insight:
What variables are good indicators of 
temporal trends?
• e.g., variables with large coherent temporal 

variation are poor indicators
What aspects of the monitoring design can 
be changed to increase the power to detect 
trends?
• e.g., ephemeral temporal variation can be 

reduced by sampling more sites (lakes) per year



Variance Components: Analyses

Step 1: We used a weighted mixed model to 
estimate components of variance and 
determine if there was a trend over time in 
size at age for: 6 fish species, 2 age classes, 
and 2 states.

Step 2: We selected 2 situations with very 
different variance components and used 
simulation modeling to explore effects of 
variance components and monitoring design on 
the statistical power to detect a trend over 
time.



Variance Components: Results
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Variance Components: Simulations
Power depends on trend magnitude: MI
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Variance Components: Simulations
Power depends on trend magnitude, but is 

lower overall for WI age 4 walleye.
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Variance Components: Simulations

Why is the power so low for WI?

MI WI

Residual 

(sampling error)

Coherent 
temporal



Variance Components: Simulations
Coherent temporal variation reduces power in WI.
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Variance Components: Conclusions to Date

Partitioning of variance components will 
differ among states (to an unknown degree).

Relatively small differences in coherent 
temporal variation have large implications for 
power to detect temporal trends.



Conclusions, Constraints, and Directions

Variation captured by regionalizations varies among 
water chemistry metrics and frameworks.

Current land-use patterns likely underlie MLRA’s
‘success.’  Future analyses will focus on least 
disturbed lakes.

Quantifying variance components for several lake 
metrics and across spatial scales will be important 
for assessing the statistical power of a national 
survey of lakes.

Landscape and lake data compilation across states 
is never-ending, time consuming, and requires $.
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